Beatablegames: vincere alla roulette, al baccarat, al blackjack e ad altri giochi
  • Home IT
  • Contatti
  • Blackjack
  • Roulette
  • Scommesse
  • Baccarat
  • Trente et Quarante
  • Psicologia del gioco
  • Articoli
  • Comp
  • Calcolatori
  • Viaggiare per gioco
  • Consulenza
  • Forum

Paradosso di STEINHAUS alla roulette

Supponiamo di puntare contemporaneamente 3 chances semplici , ad esempio Bassi, Nero e Dispari.

 

Se puntiamo un pezzo sui Bassi, uno sul Nero e un altro pezzo sui Dispari abbiamo puntato 3 pezzi e se non esce nessuna delle 3 Chances puntate abbiamo perso 3 pezzi.

 

Se esce una solo delle 3 chances abbiamo un saldo negativo di 1 Pz perché ne abbiamo puntati 3 e vinti 2 ( -3+2= -1)

 

Se invece escono due delle tre chances abbiamo un saldo positivo di 1 Pz perché ne abbiamo puntati 3 e vinti 4 (-3 + 4 = 1)

 

Se, in ultima ipotesi, escono tutte e tre le Chances puntate allora abbiamo un saldo positivo di 3 pezzi perché ne abbiamo puntati 3 e incassati 6 (-3+6 = 3 )

Ma quale è esattamente la probabilità di vincere 3 pezzi ?

 

La probabilità è data dai quattro numeri che sono contemporaneamente Bassi, Neri e Dispari e cioè i numeri 11 13 15 17. Questi sono quindi i casi favorevoli mentre i casi totali, come sappiamo, sono 37 . Sapendo questo possiamo determinare la probabilità di vincere 3 pezzi in un colpo solo che è:

probabilità 4:37 = 0,108 cioè circa il 10,8 %

 

Ma sarebbe la stessa cosa se giocassimo Bassi, Nero e Pari? I numeri che sono contemporaneamente Bassi, Nero e Pari non sono quattro ma cinque, cioè uno in più, e sono :

2 4 6 8 10.

 

Diventa quindi evidente che la probabilità di vincere tre pezzi in un colpo solo è maggiore, perché:

probabilità 5 : 37 = 0,135 cioè circa il 13,5 % .

 

Secondo quanto appena esposto la seconda combinazione di gioco è più favorevole, addirittura di circa il 3%, almeno così sembra.

Sgomberando subito il campo da facili entusiasmi degli appassionati di roulette, diciamo fin da subito che quanto appena esposto altro non è che un paradosso, conosciuto come il paradosso Steinhauss.

Torniamo quindi alla semplice esposizione dei fatti. Come ben sappiamo, dato che nel cilindro, 0 escluso, vi è lo stesso numero di Bassi e Alti di Rossi e Neri, di Pari e Dispari, è ovvio che le probabilità di vincita sono le stesse indipendentemente dalla Chance puntata, ma non è quello che abbiamo appena visto. Sembrerebbe quindi di essere in presenza di una contraddizione tra due principi della stessa “scienza” (antinomia), ma abbiamo appena detto che invece si tratta di un paradosso, il quale, come tutti i paradossi, è solo un’ apparente contraddizione. Ma basta usare un poco la logica nel modo giusto e tutto sarà più chiaro.

 

La maggiore probabilità che si ha nel secondo caso, per la vincita di 3 pezzi, deve per forza essere compensata e/o dalla minore probabilità che si avrà nelle vincite di un pezzo, dalla maggiore probabilità che si avrà nelle perdite di 1 pezzo, dalla maggiore probabilità che si avrà nelle perdite di 3 pezzi. Questo perché, come sappiamo, la sommatoria di tutte le vincite e tutte le perdite (escludendo lo 0) deve per forza essere esattamente 0.

 

Così dovrebbe essere e così è. Per constatarlo basta analizzare caso per caso, lavoro che lascio volentieri a coloro che hanno voglia di farlo.

Quindi, l’equilibrio (inteso in questo caso come pz vinti/pz persi) a lungo andare è inevitabile ma ovviamente un giocatore preferirà la vincita di 3 pezzi con 13 probabilità su 100 piuttosto che vincere 3 pezzi con una probabilità del 10%. I casi possibili sono 8 ma in un caso o nel altro, come detto, le probabilità intermedie di una e due vincite compensano le probabilità di vincere 3 pezzi (probabilità estreme).

 

In teoria una formazione roulette vale l’altra ma in pratica non è la stessa cosa.

Ecco le 8 formazioni:

BASSI NERI DISPARI 11 13 15 17

BASSI NERI PARI 2 4 6 8 10

BASSI ROSSI DISPARI 1 3 5 7 9

BASSI ROSSI PARI 12 14 16 18

ALTI NERI DISPARI 29 31 33 35

ALTI NERI PARI 20 22 24 26 28

ALTI ROSSI DISPARI 19 21 23 25 27

ALTI ROSSI PARI 30 32 34 36

  • Breve disquisizione sulla roulette on line
  • Sui ritardi
  • Paradosso di STEINHAUS
  • Sistema Renè de Margel
  • D'Alost: tutto è gioco nella vita
  • Meccanismo Theo D'Alost HD
  • Meccanismo Theo D'Alost LC1
  • Meccanismo Theo D'Alost LC2
  • Mandarino
  • Marigny: legge del terzo
  • Marigny: selezione degli scarti
  • Marigny: il metodo di guadagnare
  • I fatti di Londra MM
  • La termodinamica MM
  • Entropia e rotore MM
  • Cicli teorici e termodinamici MM
  • I tre aspetti dell'entropia MM
  • Come avvicinarsi alla roulette speculativa MM
  • Cenni storici MM
  • Relazione fra i singoli colpi? MM
  • Principio entropico
  • Banco: speculazione sulle probabilità MM
  • Razionalizzare le montanti MM
  • Ridurre la tassa 1 MM
  • Ridurre la tassa 2 MM
  • Marigny: la ricerca di una unità
Informazioni legali | Privacy | Informativa sui cookie
Uscita | modifica
  • Home IT
    • Chi siamo
  • Contatti
  • Blackjack
    • Regole del Blackjack
    • Basic strategy
    • House Advantage
    • Concetto di Conta
    • Condizione del Tavolo
    • Camoufflage al blackjack
    • Shuffle Tracking
    • Team blackjack
  • Roulette
    • Storia della roulette
    • Regole della roulette
    • Matematica della roulette
    • Vincere alla Roulette
    • Montanti (manovre fin.)
      • Della Moglie
      • DMM Stefek
      • Montante Fab
      • Bread Winner
      • Scarto 0
      • Montante Cover
    • Selezione del colpo roulette
    • Roulette Difettose (biased)
    • Visual Ballistic alla roulette
    • Predizione strumentale roulette
      • Storia Predizione strumentale
      • Considerazioni predizione strumentale
      • Aspetti legali predizione strumentale
    • Generazione Conseguenziale Roulette
    • Mano del croupier
    • Non Casualità del Generatore
    • Grandi del passato
      • Theo D'Alost
      • Marigny De Grilleau
      • Torigny
      • Joseph Jagger
      • Garcia
      • Charles Henry
      • Pirro Balcatelli
      • Charles Van Brochesteale
      • Henri Chateau
      • Gaston Vesslier
      • Mario di Torre del Greco
      • Enrico Papi
      • Marchese D'Aragò
      • Fabarri
    • Tornei roulette
  • Scommesse
    • Cosa è una scommessa
    • La quota: cosa è, come si legge
    • Cosa è la tassa (aggio)
    • Saper valutare la tassa (aggio)
    • Quote reali bet exchange
    • Asian handicap
    • Sure bet
    • Trading su quote
    • Analisi dei cali di quota
    • Valore aggiunto su probabilità media
    • Disallineamento
    • La comparazione delle quote
    • Come scegliere le scommesse
  • Baccarat
    • Storia
    • Regole
    • Prima carta
    • Matematica
    • Conta delle carte
    • Miti
  • Trente et Quarante
    • Storia
    • Regole
    • Matematica
    • Il 31 après
    • Rosso e Nero
    • Colore e Inverso
    • Colpo dell'Inglese
    • Prima carta
    • Conta delle carte
  • Psicologia del gioco
    • Gioco d'azzardo: esame critico
    • Sintomatologia del GAP
    • Gioco=malattia?
    • Relazione fra gioco e giocatore
  • Articoli
    • Breve disquisizione sulla roulette on line
    • Sui ritardi
    • Paradosso di STEINHAUS
    • Sistema Renè de Margel
    • D'Alost: tutto è gioco nella vita
    • Meccanismo Theo D'Alost HD
    • Meccanismo Theo D'Alost LC1
    • Meccanismo Theo D'Alost LC2
    • Mandarino
    • Marigny: legge del terzo
    • Marigny: selezione degli scarti
    • Marigny: il metodo di guadagnare
    • I fatti di Londra MM
    • La termodinamica MM
    • Entropia e rotore MM
    • Cicli teorici e termodinamici MM
    • I tre aspetti dell'entropia MM
    • Come avvicinarsi alla roulette speculativa MM
    • Cenni storici MM
    • Relazione fra i singoli colpi? MM
    • Principio entropico
    • Banco: speculazione sulle probabilità MM
    • Razionalizzare le montanti MM
    • Ridurre la tassa 1 MM
    • Ridurre la tassa 2 MM
    • Marigny: la ricerca di una unità
  • Comp
  • Calcolatori
  • Viaggiare per gioco
    • Il porteur
  • Consulenza
  • Forum
  • Torna su